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Abstract 

Evaluation of cardiorespiratory coupling (CRC) 

usually requires the simultaneous recording of heart 

period (HP) variability, derived from the 

electrocardiogram (ECG), and respiration. ECG-derived 

respiration (ECGDR) exploits the cardiac axis movement 

due to respiration to estimate respiratory activity directly 

from the ECG. Since CRC indexes could theoretically be 

computed using ECGDR, a comparison with results 

obtained through a more precise monitoring of respiratory 

activity such as the respiratory flow (RF) is warranted. 

Therefore, a mixed unpredictability index (MUPI) of HP 

variability from respiratory dynamics, computed via local 

k-nearest-neighbor approach, was calculated using 

ECGDR and RF in patients with preserved functional 

capacity (PFC) and with reduced functional capacity 

(RFC) before and after cardiopulmonary exercise test 

(CPET) protocol. The MUPI computed from RF was found 

to be significantly increased in PFC patients after CPET 

protocol, while no effect could be observed when 

considering the ECGDR. Moreover, the correlation 

between the two MUPI indexes was limited. We conclude 

that indexes of CRC might require more direct measures of 

respiration than ECGDR to detect pathophysiological 

differences. 

 

 

1. Introduction 

Cardiorespiratory coupling (CRC) refers to the 

influences of respiration on heart period (HP) changes 

occurring through a variety of physiological mechanisms 

[1]. The assessment of CRC usually requires the recording 

of the electrocardiogram (ECG), necessary for the 

evaluation of HP, and of a respiratory trace. Cardiac axis 

movements synchronous with respiration produce 

amplitude modulations of the ECG that allow one to derive 

ECG-derived respiration (ECGDR) [2]. ECGDR has been 

used to estimate respiratory rate, and occasionally some 

additional respiratory features [3-7]. The ECGDR has the 

undoubted advantage of monitoring CRC with the 

minimum number of traces (i.e., without any direct 

recording of the respiratory activity). However, the 

accuracy in the estimation of CRC indexes when 

employing ECGDR is debated [3]. It is therefore of interest 

to compare results obtained from ECGDR and direct 

recordings of respiratory activity such as respiratory flow 

(RF) when modern CRC indexes, explicitly devised to 

account for the issue of directionality of the interactions 

and presence of nonlinear features, are computed [8]. 

It is also known that high intensity physical exercise 

modifies cardiac control as monitored through HP 

variability, with significant differences between baseline 

and recovery in the minutes following exercise cessation 

[9-12]. The dynamics of vagal reactivation are highly 

individual but generally dependent on exercise intensity 

[10], with a greater intensity resulting in a slower recovery 

of HP and HP variability [9,11,12]. As CRC decreases in 

situations of sympathetic activation and vagal withdrawal 

[13], high-intensity physical exercise could potentially 

influence CRC during the recovery phase. 

The aim of this study is to compare ECGDR and 

respiratory flow (RF) in the evaluation of CRC using a 

local mixed unpredictability (MUP) approach [8,14,15]. 

The methodology was tested in patients with preserved 

functional capacity (PFC) and with reduced functional 

capacity (RFC) before and after cardiopulmonary exercise 

test (CPET) protocol on a cycle ergometer. 
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2. MUP 

Given two series x={𝑥𝑛, 1≤n≤N} and y={𝑦𝑛, 1≤n≤N}, 

where n is the progressive sample counter and N the series 

length, we define the multidimensional mixed pattern 

𝒙𝑛
−⨁𝒚𝑛

− concatenating 𝑚𝑥 past samples of x collected in 

𝒙𝑛
− = [𝑥𝑛−𝜏𝑥

… 𝑥𝑛−𝜏𝑥−𝑚𝑥+1] and 𝑚𝑦 past samples of y 

collected in 𝒚𝑛
− = [𝑦𝑛−𝜏𝑦

… 𝑦𝑛−𝜏𝑦−𝑚𝑦+1], where 𝜏𝑥 

and 𝜏𝑦 are assigned latencies [8,14,15]. We refer to 𝑦𝑛 as 

the image of 𝒙𝑛
−⨁𝒚𝑛

− through a deterministic function f(·) 

whose estimate allows the prediction �̂�𝑛 of 𝑦𝑛. We 

exploited a local MUP approach based on k nearest 

neighbors to calculate �̂�𝑛. More precisely �̂�𝑛  was 

computed as the weighted mean of the images of the k 

nearest neighbors of the reference mixed vector 𝒙𝑛
−⨁𝒚𝑛

−, 

whose weights are the inverse of their distance from 

𝒙𝑛
−⨁𝒚𝑛

− [16]. The complement to 1 of the normalized 

cross-correlation coefficient ρ2 between 𝑦 and the 

predicted series �̂� was utilized to quantify unpredictability. 

Only 𝒙𝑛
−⨁𝒚𝑛

− was excluded from the set of its k nearest 

neighbors [16]. The portions of 𝒙𝑛
−⨁𝒚𝑛

− (i.e., 𝒙𝑛
−  and 𝒚𝑛

−) 

were built incrementally according to the strategy of 

nonuniform embedding [8,17,18]. Each component of the 

vectors 𝒙𝑛
−  and 𝒚𝑛

− at the same time index was added only 

if the addition was able to decrease unpredictability. The 

procedure of adding components to 𝒙𝑛
−  and 𝒚𝑛

− was 

stopped when unpredictability did not decrease anymore. 

The minimum of unpredictability was taken as index of the 

inability of x to predict y and it will be referred to as the 

MUP index (MUPI) [8]. MUPI is bound between 0 (i.e., y 

is perfectly predictable using past values of y and x) and 1 

(i.e., y is completely unpredictable using past values of y 

and x) [8]. According to standard practice [8], k=30, 𝜏𝑥=0 

beats and 𝜏𝑦=1 beat. In the following, we computed MUPI 

with x=RF (MUPIRF) or x=ECGDR (MUPIECGDR), while y 

is HP variability. 

 

3. Experimental Protocol and Data 

Analysis 

3.1. Experimental Protocol 

Data were acquired from 31 patients who received 

clinical indication of cardiopulmonary exercise test 

(CPET) examination at IRCCS Policlinico San Donato, 

San Donato Milanese, Milan, Italy. According to clinical 

parameters, 20 patients were classified as PFC (age: 58±11 

yrs, 9 males) and 11 as RFC (60±11 yrs, 5 males). All 

patients underwent a standard CPET with incremental 

ramp protocol on an electronically braked cycle ergometer. 

ECG and RF were acquired (Quark CPET, Cosmed, Rome, 

Italy) before CPET protocol (PRE), and during the 

recovery phase (POST) at a sampling frequency of 500 Hz. 

The study protocol adhered to the principles of the 

Declaration of Helsinki for medical research involving 

human subjects and was approved by the local ethical 

committee. Written informed consent was obtained from 

all patients before taking part in the study. 

 

3.2. Series Extraction 

R-wave peaks were located according to a threshold-

based algorithm working on the first derivative of the ECG 

[2]. The identified R-wave peaks were then visually 

checked and manually corrected, if necessary. The time 

distance between two consecutive R-wave peaks was taken 

as HP. ECGDR was taken as the amplitude of the first R-

wave peak delimiting the nth HP with respect to the 

isoelectric line [2]. RF signal was sampled at the same time 

instant. RF values were expressed in mL/s and ECGDR 

samples in arbitrary units (a.u.). Sequences of 200 

consecutive values were selected at random within each 

experimental session under stationary conditions. 

Examples of the HP, RF, and ECGDR series acquired from 

one RFC subjects and one PFC patient in PRE are shown 

in Fig.1. Mean and variance were computed from the HP 

variability series, labelled µHP and σ2
HP, and expressed 

respectively in ms and ms2. Respiratory frequency was 

computed from the two respiratory series, labelled fRF and 

fECGDR, and expressed in Hz. 

 

3.3. Statistical Analysis 

Normality was tested using the Shapiro-Wilk test. Two-

 
Figure 1. Examples of variability series of HP (a,b), RF 

(c,d) and ECGDR (e,f) collected in one RFC individual 

(a,c,e), and one PFC patient (b,d,f) in PRE. 
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way repeated measures analysis of variance (one factor 

repetition, Holm-Sidak test for multiple comparisons) was 

performed to evaluate the between-group differences 

within the same experimental condition (i.e., PRE or 

POST) and the effects of CPET protocol within the same 

experimental group (i.e., PFC or RFC). Pearson’s 

correlation coefficient r and type I error probability p were 

computed between the pooled results of MUPIRF and 

MUPIECGDR and of fRF and fECGDR. Results are presented as 

mean±standard deviation. Statistical analysis was carried 

out using a commercial statistical program (Sigmaplot, 

v.14.0, Systat Software, Inc., Chicago, IL, USA). A p<0.05 

was always considered as significant. 

 

4. Results 

Table 1 summarizes results regarding time domain HP 

variability and respiratory indexes. While µHP decreased 

significantly in POST in both groups, σ2
HP only 

significantly declined in the PFC cohort. Both fRF and 

fECGDR showed similar increases in POST compared to PRE 

in both groups (i.e., RFC and PFC), although it was only 

statistically significant in PFC patients.  

Table 2 summarizes MUPI in PFC and RFC groups 

during PRE and POST as computed from RF and ECGDR. 

MUPIRF tended to increase in POST for both groups, with 

the difference being significant in PFC patients. This 

tendency and statistical significance were lost when 

MUPIECGDR was considered. MUPIRF and MUPIECGDR 

were also found to be only moderately correlated (r=0.457, 

p=3.99×10‒4), while correlation between fRF and fECGDR 

was much stronger (r=0.827, p=7.11×10‒15). 

 

5. Discussion 

The main findings of this study can be summarized as 

follows: i) ECGDR series is valid to estimate respiratory 

rate, but it is less useful to detect changes of CRC in 

response to CPET protocol; ii) RF series indicates that the 

CPET protocol affects CRC; iii) the modification of CRC 

after CPET protocol is visible only in PFC patients, thus 

indicating a more reactive and flexible neural cardiac 

control. 

ECGDR has traditionally been used as a surrogate for 

respiration to estimate the respiratory rate [3-7]. The 

present study confirms the validity of ECGDR for the 

estimation of respiratory rate. Indeed, fECGDR was strongly 

correlated with fRF and both estimates suggest similar trend 

across groups and experimental conditions. Conversely, 

the conclusion about the similarity of indexes derived from 

RF and ECGDR does not hold for MUPI. Indeed, in 

addition to a limited agreement between MUPIRF and 

MUPIECGDR, the increase of MUPI after CPET protocol 

was evident only using MUPIRF. An increase of MUPI 

after CPET protocol is expected given that sympathetic 

activation commonly reduces CRC [13,19,20] as a likely 

result of a concomitant restraint of the vagal control [21]. 

A decrease in CRC after CPET protocol could be taken as 

Table 1. Time domain HP variability and respiratory indexes in PFC and RFC groups. 

Index 
RFC PFC 

PRE POST PRE POST 

µHP [ms] 909±132 797±128* 828±168 646±65* 

σ2
HP [ms2] 2211±1120 2079±1103 1859±1321 1421±881* 

fRF [Hz] 0.29±0.04 0.33±0.04 0.27±0.05 0.31±0.04* 

fECGDR [Hz] 0.28±0.04 0.31±0.04 0.26±0.04 0.30±0.05* 

RFC: reduced functional capacity; PFC: preserved functional capacity; CPET: cardiopulmonary exercise test; PRE: before 

CPET protocol; POST: after CPET protocol; HP: heart period; µHP: HP mean; σ2
HP: HP variance; RF: respiratory flow; fRF: 

respiratory rate from RF; ECGDR: ECG-derived respiration; fECGDR: respiratory rate from ECGDR. The symbol * indicates 

p<0.05 vs PRE. 

Table 2. MUPI in PFC and RFC groups in PRE and POST. 

Index 
RFC PFC 

PRE POST PRE POST 

MUPIRF 0.38±0.24 0.48±0.25 0.37±0.24 0.55±0.25* 

MUPIECGDR 0.55±0.25 0.45±0.23 0.36±0.24 0.46±0.26 

RFC: reduced functional capacity; PFC: preserved functional capacity; CPET: cardiopulmonary exercise test; PRE: before 

CPET protocol; POST: after CPET protocol; RF: respiratory flow; ECGDR: ECG-derived respiration; MUPI: mixed 

unpredictability index. The symbol * indicates p<0.05 vs PRE. 
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an index of a greater reactivity and flexibility of the neural 

cardiac control that allows for a more efficient response to 

stressors [19]. 

Previous studies suggested that ECGDR and signals 

more directly linked to respiratory activity could lead to a 

different characterization of CRC, especially when CRC 

indexes accounting for causality of the interactions are 

exploited [3]. Indeed, in [3] it was suggested that direct 

respiration recordings should be preferred in the 

assessment of transfer entropy from respiration to HP 

variability since the noisy nature of ECGDR could degrade 

causal relationships.  

 

6.  Conclusions 

We conclude that, while ECGDR is a useful tool for the 

estimation of respiratory rate, the computation of modern 

indexes of CRC explicitly accounting for causality and 

nonlinearities, such as MUPI, might require more direct 

measures of respiration to detect differences across groups 

and experimental conditions. Furthermore, MUPI, as 

derived from RF, was shown to be a useful tool to assess 

the effect of CPET protocol on CRC and, more 

remarkably, this effect is different in PFC and RFC groups. 

This aspect that should be further investigated in 

conditions of impaired respiratory function such as in 

COVID-19 syndrome. 
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